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1 Introduction
Soiling of PV panels is the process in which airborne particles deposit and accumulate on the panel
surface, reducing solar irradiance received by the panel by absorbing and reflecting a portion of the
incident light [1, 2]. In addition to reversible optical losses, soiling can cause permanent damage
to PV modules. In cases of omitted cleaning, cemented dust layers can be very difficult to remove,
whereas harsh cleaning with brushes can lead to scratching or abrasion of anti-reflective coatings
or panel glass. Non-uniform soiling causes partial shading, which can lead to the formation of
hot spots (areas of high temperature that result in localized decrease in efficiency and accelerated
material degradation). Even with regular cleaning, mechanical loads during cleaning or thermal
shocks when hot panels are cleaned with cold water can break solar cells or cause crack formation.
Soiling has been estimated to cause an average loss of 3-4% of the global annual energy yield of
photovoltaics [3]. Soiling also introduces additional maintenance costs and increases the uncertainty
in the estimation of PV performance, leading to higher financial risks and interest rates charged to
plant developers [4]. Improving soiling loss predictions will allow to both more-accurately predict
system energy production, which will lower financial risk and interest rates, and form more optimal
cleaning maintenance schedules to mitigate some of these losses.

The vast majority of previous research into soiling has consisted of observations of the reduction
in performance due to dust accumulation as a function of exposure time at a particular location.
Many researchers use these observations to derive estimates for annual soiling loss (e.g. 5% per
year loss) or constant daily soiling rates (e.g. 0.1%/day). These rough estimates are then used in
PV performance modeling and for cleaning schedule guidance [5]. Annual PV soiling losses are
generally computed by considering the soiling rate (typically the increase in loss per day) for a
site combined with rainfall patterns and manual cleaning events. For example, in 2006, Kimber
et al. presented a new model for predicting soiling losses in California as a function of rainfall
data and the number of manual cleanings [6]. Their empirical model uses typical meteorological
year (TMY) data and hourly soiling rates to predict energy production. They suggested a linear
model to represent daily system efficiency reduction due to soiling between rainfalls. When daily
rainfall exceeds a threshold value, the soiling loss is assumed to drop to a minimum value. They
found that their model is more accurate than using a constant annual soiling loss factor, which is
a common approach in the industry. The Kimber soiling modeling approach has become popular
in the industry. However, the Kimber model does not consider the influence of site-specific
environmental parameters such as air quality, wind speed, and humidity.
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One of the most comprehensive studies on the influence of environmental parameters on soiling
was performed by Micheli et al. at the U.S. National Renewable Energy Laboratory (NREL), who
searched for correlations between soiling and 102 environmental parameters at 20 PV sites [7].
Out of all parameters investigated, they found that the annual average of daily mean particulate
matter (PM) and precipitation pattern (quantified by the average length of the dry period) recorded
by stations near the PV systems are the best soiling predictors. PM is defined as a mixture of solid
particles and liquid droplets suspended in air. There are two types of PM generally reported: PM10
and PM2.5, representing the concentrations of airborne PM less than 10 microns and less than 2.5
microns in diameter in a cubic meter of air, respectively. Note that PM2.5 is a subset of PM10, with
these smaller particles typically remaining airborne and traveling longer distances than the larger
particles included in PM10 because of their lower mass. PM2.5 is the main cause of haze, which is
periodically reduced visibility in urban areas, causing a reduction in solar intensity and alteration
of the solar spectrum reaching the ground [8]. The NREL study found no clear conclusion about
whether PM10 or PM2.5 was a better predictor of soiling. A separate study performed in the
Atacama Desert supports NREL’s conclusions, finding that soiling at various sites was strongly
correlated with aerosol optical depth, which is known to be correlated to PM [9]. While these works
have shown that PM concentration seems to be a good explanation for variation in soiling rates over
large distances (geographic location), it has been reported to be inadequate to explain day-to-day
variations in soiling rates at a particular location because of other weather conditions [2]. To predict
soiling over shorter periods such as weeks, days, or even hours, additional parameters such as wind
and humidity are thought to be important [10, 11].

2 Semi-Physical Soiling Model
PV SoilSayer has the option to use a semi-physical soiling model that was developed as part of a
research collaboration with Michigan State University. The model is described in detail elsewhere
[12] so we only provide a brief summary here. The semi-physical soiling model uses PM10 and
rainfall patterns as the dominant soiling predictors, but also adjusts the predictions based on local
weather conditions (wind speed and relative humidity) at each site. This model is an improvement
over previous academic works [13–15] and describes soiling accumulation as the net of three
contributing mechanisms: sedimentation, wind-induced deposition, and resuspension. The net
soiling accumulation rate is found by multiplying a weighted sum of the deposition velocities
due to sedimentation (𝑣𝑠) and wind (𝑣𝑑,𝑤𝑖𝑛𝑑) by the particulate matter concentration (PM10) and
subtracting the resuspension flux (𝐹𝑟𝑒𝑠𝑢𝑠𝑝)

¤𝑚𝑎𝑐𝑐𝑢𝑚 = 𝑃10(𝑣𝑠 + 𝑤𝑣𝑑,𝑤𝑖𝑛𝑑) − 𝐹𝑟𝑒𝑠𝑢𝑠𝑝 (1)

where 𝑤 = 0.1 is a dimensionless fitting parameter controlling the relative effect of wind-induced
deposition and sedimentation.

The model also considers the effects of rainfall. There is a consensus in the literature that
rain often cleans solar panels; however, a minimum amount of precipitation is needed for effective
cleaning. Given the wide variability in the observed effectiveness of panel cleaning by rainfall, our
model requires a user input (named Rainfall Clean Amount) that specifies the amount of rainfall that
results in a perfect or near-perfect clean. The quality of the cleaning effect of rainfall is specified
in terms of the soiling loss remaining after a rainfall event with precipitation amount reaching the

2



Rainfall Clean Amount. We assume that any rainfall less than the Rainfall Clean Amount results
in a partial cleaning that is proportional to the rainfall divided by the Rainfall Clean Amount. For
example, if 6 mm of rainfall is needed for a clean which leaves 5% soiling loss (Rainfall Clean
Quality = 5%), then 2 mm will result in a 0.33 · 0.95 = 31.35% reduction in the soiling amount.
Users can also specify different rainfall cleaning thresholds for dry and wet seasons and a minimum
hourly rainfall rate threshold needed to result in a cleaning effect. Further details about the rainfall
cleaning model parameters are described in the PV SoilSayer user guide.

The losses due to soiling are also influenced by the angle of incidence (AOI) of the incoming
solar radiation. Multiple studies [9, 16–20] have found that the losses due to soiling are significantly
increased at larger AOIs. The AOI of direct solar radiation depends on the sun’s position in the sky
and the solar panel tilt angle, which is variable for panels that track the sun (single-axis trackers). On
sunny days, losses have been found to be symmetric about solar noon, where they reach a minimum
[9, 19]. Changes in angular response are likely due to changes in the optical path length (OPL) of
the direct radiation through absorbers and scatterers in the dust layers over the PV module; a shorter
OPL (e.g. at noon) leads to less attenuation of direct irradiance that reaches the module surface,
while longer OPL leads to more attenuation, enhancing soiling effects [9]. On cloudy days, where
global irradiance is mostly composed of diffuse radiation, losses appear to be mostly independent of
AOI, probably due to the isotropic nature of diffuse radiation [19]. Since the proportion of diffuse to
direct solar irradiance varies from day-to-day, models that attempt to describe the incidence-angle
modifier due to soiling need to separately consider diffuse and direct irradiance. PV SoilSayer uses
the experimentally-validated models developed by Martin and Ruiz to describe soiling-dependent
losses due to incident light that is not perpendicular to the solar panel surface [21–23].

3 Model Validation
The semi-physical soiling accumulation model was validated by comparing its predictions with the
results from NREL’s study for the 20 sites that was described above. For verification, we selected
Site 3 (Calipatria, CA) and 11 (Lamont, CA) from the study, which had less noisy data and more
significant observed soiling (many of the sites had yearly average soiling ratios that were greater
than 99%). Site 3 is a single-axis tracker, while Site 11 is a fixed tilt (20◦) system, so this site
selection allowed testing the soiling models for both types of systems. Inputs to the soiling model
were daily precipitation data provided in NREL’s publication, hourly weather data for the year
when the soiling measurements were taken downloaded from NSRDB [24], and monthly average
particulate matter data taken from the US Environmental Protection Agency’s (EPA) database [25].
The daily precipitation data was converted to an hourly format by dividing by 24. We compared the
yearly average soiling rates, which are computed by taking the average of the soiling rates during
the dry periods. The soiling rates predicted by the models were similar to NREL’s measured values
for these sites (between 0.1-0.15%/day).

Additionally, we compared the soiling accumulation time-series. Figure 1a shows the compar-
ison for Site 3 from NREL’s study when using unmodified input data, as described above. The
predicted soiling rate during the dry period matches the measurements, but there are discrepancies
in the effect of rainfall. One possible reason for these discrepancies is that the daily rainfall data
lacks information about rain intensity (mm/hr), while the same amount of daily rain can be more
or less effective in cleaning depending on its intensity. Secondly, NREL’s publication provides
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rainfall data from an online database (PRISM [26]), instead of measuring it directly at the sites.
This could mean that the off-site PRISM data measured a different amount of rain than occurred
at the site. For a proof of concept, we adjusted the rainfall amounts of a few rain events where the
measured effect of rain was different than predicted (Table 1). Note that we did not change the
main rainfall pattern (dates when significant rain of more than 1 mm occurred).

Table 1: Daily rainfall adjustments needed to account for measured soiling ratio time-series for
NREL Site 3.

Date
Original Adjusted
Rainfall (mm) Rainfall (mm)

Apr 24 1.04 0.13
Jun 8 0.354 1
Jul 18 3.64 4.64
Sep 7 0.4 0
Oct 15 3.1 7

Figure 1 shows the forecast with these adjustments to the rainfall input data. Changes to
decrease rainfall can be justified as follows. The rainfall could have been very light and distributed
throughout the day, leading to almost no cleaning effect. For example, often rainfall of less than 0.5
mm/hr does not result in a cleaning effect [27]. However, the dataset does not contain information
about rainfall intensity. Changes to increase rainfall can be justified by the chance that the rainfall
could have been higher at the site than the PRISM database value or more effective at cleaning than
predicted.

Figure 1: Comparison of model predictions with NREL Site 3 (Calipatria, California) when using
precipitation data provided by NREL (a) and when using modified rainfall data (b).

We repeated the same validation approach for NREL Site 11 (Lamont, CA) with the results
without and with adjustment to the rainfall shown in Figure 2. With this site, we had to add a few
partial rainfall clean events to account for the measured increases in the soiling ratio that did not
correspond to any recorded rainfall. The changes to rainfall are listed in Table 2.
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Table 2: Daily rainfall adjustments needed to account for measured soiling ratio time-series for
NREL Site 11.

Date
Original Adjusted
Rainfall (mm) Rainfall (mm)

Apr 29 0 0.25
May 24 0 0.75
Aug 15 0 0.2
Oct 8 0.65 2.3

Figure 2: Comparison of model predictions with NREL Site 11 (Lamont, California) measured
data when using precipitation data provided by NREL (a) and when using modified rainfall data
(b).

4 Conclusion
In conclusion, model validation showed an excellent agreement between measured and predicted dry
period soiling rates but a difficulty in predicting the effectiveness of rainfall in cleaning the panels.
Modifying the rainfall to change its effectiveness in cleaning allowed to account for most of the
discrepancies between measured and predicted data. This demonstrates the need for reliable hourly
rainfall data measured on-site and further research into understanding rainfall’s effectiveness in
cleaning panels as a function of the rain intensity and amount. PV Soilsayer with the semi-physical
soiling model described here is expected to help PV system developers, maintainers, engineers, and
researchers have a better understanding of soiling losses at their current and potential future sites,
as well as have access to easier-to-use and more-accurate soiling analysis tools.
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